Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Inflammopharmacology ; 31(2): 823-844, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2209422

ABSTRACT

Acute respiratory distress syndrome (ARDS) is one of the major causes of mortality in COVID-19 patients, due to limited therapeutic options. This prompted us to explore natural sources to mitigate this condition. Gymnema Sylvestre (GS) is an ancient medicinal plant known to have various therapeutic effects. This investigation examined the therapeutic effect of hydroalcoholic extract of Gymnema Sylvestre (HAEGS) against lipopolysaccharide (LPS)-induced lung injury and ARDS in in vitro and in vivo models. UHPLC-HRMS/GC-MS was employed for characterizing the HAEGS and identified several active derivatives including gymnemic acid, gymnemasaponins, gymnemoside, gymnemasin, quercetin, and long fatty acids. Gene expression by RT-qPCR and DCFDA analysis by flow cytometry revealed that several inflammatory cytokine/chemokine, cell injury markers, and reactive oxygen species (ROS) levels were highly upregulated in LPS control and were significantly reduced upon HAEGS treatment. Consistent with the in vitro studies, we found that in LPS-induced ARDS model, pre-treatment with HAEGS significantly suppressed the LPS-induced elevation of inflammatory cell infiltrations, cytokine/chemokine marker expression, ROS levels, and lung injury in a dose-dependent manner. Further mechanistic studies demonstrated that HAEGS suppressed oxidative stress by modulating the NRF2 pathway and ameliorated the ARDS through the NF-κB/MAPK signalling pathway. Additional fractionation results revealed that fraction 6 which has the exclusive composition of gymnemic acid derivatives showed better anti-inflammatory effects (inhibition of IL-6 and IL-1ß) at lower concentrations compared to HAEGS. Overall, HAEGS significantly mitigated LPS-induced lung injury and ARDS by targeting the NF-κB/MAPK signalling pathway. Thus, our work unravels the protective role of HAEGS for the first time in managing ARDS.


Subject(s)
COVID-19 , Gymnema sylvestre , Lung Injury , Respiratory Distress Syndrome , Rats , Animals , NF-kappa B/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Gymnema sylvestre/metabolism , Reactive Oxygen Species , Lung Injury/drug therapy , Lipopolysaccharides/pharmacology , Respiratory Distress Syndrome/drug therapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cytokines
2.
Phytomedicine ; 92: 153729, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1373222

ABSTRACT

BACKGROUND: Inflammation-mediated lung injury is a major cause of health problems in many countries and has been the leading cause of morbidity/mortality in intensive care units. In the current COVID-19 pandemic, the majority of the patients experienced serious pneumonia resulting from inflammation (Acute respiratory distress syndrome/ARDS). Pathogenic infections cause cytokine release syndrome (CRS) by hyperactivation of immune cells, which in turn release excessive cytokines causing ARDS. Currently, there are no standard therapies for viral, bacterial or pathogen-mediated CRS. PURPOSE: This study aimed to investigate and validate the protective effects of Dehydrozingerone (DHZ) against LPS induced lung cell injury by in-vitro and in-vivo models and to gain insights into the molecular mechanisms that mediate these therapeutic effects. METHODS: The therapeutic activity of DHZ was determined in in-vitro models by pre-treating the cells with DHZ and exposed to LPS to stimulate the inflammatory cascade of events. We analysed the effect of DHZ on LPS induced inflammatory cytokines, chemokines and cell damage markers expression/levels using various cell lines. We performed gene expression, ELISA, and western blot analysis to elucidate the effect of DHZ on inflammation and its modulation of MAPK and NF-κB pathways. Further, the prophylactic and therapeutic effect of DHZ was evaluated against the LPS induced ARDS model in rats. RESULTS: DHZ significantly (p < 0.01) attenuated the LPS induced ROS, inflammatory cytokine, chemokine gene expression and protein release in macrophages. Similarly, DHZ treatment protected the lung epithelial and endothelial cells by mitigating the LPS induced inflammatory events in a dose-dependent manner. In vivo analysis showed that DHZ treatment significantly (p < 0.001) mitigated the LPS induced ARDS pathophysiology of increase in the inflammatory cells in BALF, inflammatory cytokine and chemokines in lung tissues. LPS stimulated neutrophil-mediated events, apoptosis, alveolar wall thickening and alveolar inflammation were profoundly reduced by DHZ treatment in a rat model. CONCLUSION: This study demonstrates for the first time that DHZ has the potential to ameliorate LPS induced ARDS by inhibiting cytokine storm and oxidative through modulating the MAPK and NF-κB pathways. This data provides pre-clinical support to develop DHZ as a potential therapeutic agent against ARDS.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Animals , Cytokine Release Syndrome , Endothelial Cells/metabolism , Humans , Lipopolysaccharides , Lung/metabolism , NF-kappa B/metabolism , Oxidative Stress , Pandemics , Rats , Respiratory Distress Syndrome/drug therapy , SARS-CoV-2 , Styrenes
SELECTION OF CITATIONS
SEARCH DETAIL